Линеаризация уравнений продольного движения самолета

Информация » Разработка системы автоматического управления углом тангажа легкого самолета » Линеаризация уравнений продольного движения самолета

Страница 4

Для рассматриваемого в проекте легкого самолета на одном из режимов полета коэффициенты уравнений (2.18) принимают значения [6]:

nВ = 49,

n0 = 0.4,

n22 = 2.4,

n32 = 38,

n33 = 2.45,

Таким образом, подставляя значения коэффициентов в (2.19) и (2.25) получим передаточную функцию самолета:

(2.26)

а также векторное дифференциальное уравнение самолета:

(2.27)

Анализ модели самолета

Таким образом, получена модель в пространстве состояний:

(2.28)

где X(t) – вектор переменных состояния;

u(t) – задающее воздействие;

y(t) – выходной сигнал;

A3x3, B3x1, C1x3 – матрицы коэффициентов объекта, входа и выхода соответственно;

t – время.

Матрицы А и В приведены выше, матрица выхода имеет вид:

(2.29)

Структурная схема модели представлена на рис. 2.3.

Рис.2.3. Структурная схема модели

Передаточная функция модели имеет вид:

По расположению полюсов модели можно судить об устойчивости объекта, и характере его переходного процесса. Собственные числа матрицы А (корни характеристического уравнения системы) можно определить, решив характеристическое уравнение объекта вида:

(2.30)

Так как модель задана в пространстве состояний, для нахождения коэффициентов характеристического уравнения целесообразно привести матрицу коэффициентов объекта А к канонической форме достижимости, где она имеет следующую структуру:

(2.31)

где Wc – матрица управляемости вида:

(2.32)

Вычислив по формуле (2.31) матрицу АКД ,

(2.33)

получим характеристическое уравнение:

(2.34)

Решая уравнение (2.34), найдем полюсы системы:

(2.35)

Наличие нулевого полюса свидетельствует о том, что объект находится на границе устойчивости. Расположение полюсов на комплексной плоскости приведено на рис.2.4.

Рис. 2.4 Расположение полюсов на комплексной плоскости

Числитель передаточной функции представляет собой полином первой степени. Нуль передаточной функции (решение этого полинома) – равен:

η = 0,05.

Переходная характеристика объекта представлена на рис.2.5.

Рис. 2.5 Переходная характеристика объекта

Страницы: 1 2 3 4 5

Другое по теме:

Определение производительности конвейера
Исходя из максимальной нормы посыпки пескосоляной смесью (ПСС) рекомендованной департаментом “Росавтодор - 200 г/м2, при рабочей скорости базового шасси МАЗ-5516А5 25км/ч, и ширины распределения 8м, рассчитаем необходимые параметры конвей ...

Замер компрессии в цилиндрах двигателя
Для того чтобы оценить состояние цилиндропоршневой группы и герметичности между клапаном и седлом, потребуется компрессометр (например, BEST-01BР, BEST-02BР, МТ308М и др.), который отличается тем, что у него имеется обратный клапан. Компр ...

Экономическая эффективность внедрения дефектоскопа ДФ – 201.1А
Применяемые при ремонте методы неразрушающего контроля хороши тем, что в процессе контроля контролируемый образец не разрушается и не меняет своих эксплуатационных характеристик, что позволяет выполнять сто процентный (и не выборочный) ко ...

Навигация

Copyright © 2024 - All Rights Reserved - www.transportgood.ru