Синтез фильтра Калмана

Информация » Разработка системы автоматического управления углом тангажа легкого самолета » Синтез фильтра Калмана

Страница 1

Так как движение самолета подвержено случайным воздействиям, управление определяется на основе оценивания состояния системы. Решим задачу синтеза линейного алгоритма фильтрации, который формирует несмещенную оценку вектора состояния системы с минимальной дисперсией.

Движение системы в общем случае описывается векторным дифференциальным уравнением:

(2.61)

где w – вектор случайных помех, сопровождающих измерения.

Вектор измеряемых выходных координат этой системы, который доступен наблюдению и обработке, определяется соотношением:

(2.62)

где v – вектор случайных помех, сопровождающих измерения.

Предполагается, что система (2.61), (2.62) при w(t)º0 и v(t)º0 наблюдаема. Воздействие w(t) и v(t) будем считать гауссовскими случайными процессами типа белого шума с нулевыми математическими ожиданиями:

(2.63)

их ковариационные матрицы:

(2.64)

где d(t) – дельта-функция Дирака;

Q(t) – симметрическая неотрицательно-определенная матрица интенсивности белого шума w(t);

R(t) – симметрическая положительно-определенная матрица интенсивности белого шума v(t);

Предположим, что начальное состояние системы X(t0) – гауссовский случайный вектор с известным математическим ожиданием:

(2.65)

и ковариационной матрицей

(2.66)

Для этой матрицы при совпадающих значениях аргументов будем использовать обозначение:

(2.67)

Искомой является линейная несмещенная оценка вектора X(t), построенная на основе результатов наблюдений y(t), (t0 ≤ t ≤ t). Обозначим эту оценку через и допустим, что она может быть получена на выходе фильтра, описываемого векторным дифференциальным уравнением:

(2.68)

Ошибку оценивания

(2.69)

можно назвать ошибкой фильтра. Чтобы процесс на выходе фильтра был несмещенной оценкой, должно выполнятся равенство:

(2.70)

Вычисляя математическое ожидание обеих частей уравнения (2.68), получим:

(2.71)

но из (2.62) следует, что

(2.72)

На основании (2.70) – (2.72) получаем дифференциальное уравнение для среднего значения вектора состояния системы:

(2.73)

Вычисляя математическое ожидание от обеих частей уравнения (2.61), получим еще одно уравнение для среднего значения вектора состояния:

(2.74)

Сравнивая уравнения (2.73) и (2.74), можно определить первое условие несмещенности оценки вектора состояния с помощью рассматриваемого фильтра:

(2.75)

Второе условие состоит в том, чтобы уравнения (2.73) и (2.74) решались при одном и том же начальном условии:

(2.76)

Если выполнить условия несмещенности (2.75) и (2.76), то уравнение фильтра (2.68) примет вид:

(2.77)

Определим матрицу коэффициентов усиления фильтра K(t), которая должна обеспечивать оптимальную оценку в том смысле, что составляющие ошибки оценивания (2.69) должны иметь минимальную дисперсию:

Страницы: 1 2

Другое по теме:

Организация рабочего места
Наименование отделений и участков Выполняемые работы 1 2 1. Разборочно-дефектопроверочное отделение Участок разборки и мойки электрических машин Главные генераторы, двухмашинные агрегаты и тяговые электродвигате ...

Определение объемов работы станции
Объем грузовой работы станции в среднем в сутки составляет: погрузка - 98 ваг; выгрузка - 453 ваг; Для определения избытка или недостатка порожних вагонов на станции составляется балансовая таблица (таблица 1.2). Баланс порожних вагоно ...

Плечи обслуживания
локомотивный депо парк узел Тяговым плечом называется участок железнодорожного пути, ограниченный основным и оборотным депо или пунктом оборота локомотивов. Тяговое плечо может соответствовать участку обслуживания (работы) локомотивных б ...

Навигация

Copyright © 2019 - All Rights Reserved - www.transportgood.ru