Синтез фильтра Калмана

Информация » Разработка системы автоматического управления углом тангажа легкого самолета » Синтез фильтра Калмана

Страница 1

Так как движение самолета подвержено случайным воздействиям, управление определяется на основе оценивания состояния системы. Решим задачу синтеза линейного алгоритма фильтрации, который формирует несмещенную оценку вектора состояния системы с минимальной дисперсией.

Движение системы в общем случае описывается векторным дифференциальным уравнением:

(2.61)

где w – вектор случайных помех, сопровождающих измерения.

Вектор измеряемых выходных координат этой системы, который доступен наблюдению и обработке, определяется соотношением:

(2.62)

где v – вектор случайных помех, сопровождающих измерения.

Предполагается, что система (2.61), (2.62) при w(t)º0 и v(t)º0 наблюдаема. Воздействие w(t) и v(t) будем считать гауссовскими случайными процессами типа белого шума с нулевыми математическими ожиданиями:

(2.63)

их ковариационные матрицы:

(2.64)

где d(t) – дельта-функция Дирака;

Q(t) – симметрическая неотрицательно-определенная матрица интенсивности белого шума w(t);

R(t) – симметрическая положительно-определенная матрица интенсивности белого шума v(t);

Предположим, что начальное состояние системы X(t0) – гауссовский случайный вектор с известным математическим ожиданием:

(2.65)

и ковариационной матрицей

(2.66)

Для этой матрицы при совпадающих значениях аргументов будем использовать обозначение:

(2.67)

Искомой является линейная несмещенная оценка вектора X(t), построенная на основе результатов наблюдений y(t), (t0 ≤ t ≤ t). Обозначим эту оценку через и допустим, что она может быть получена на выходе фильтра, описываемого векторным дифференциальным уравнением:

(2.68)

Ошибку оценивания

(2.69)

можно назвать ошибкой фильтра. Чтобы процесс на выходе фильтра был несмещенной оценкой, должно выполнятся равенство:

(2.70)

Вычисляя математическое ожидание обеих частей уравнения (2.68), получим:

(2.71)

но из (2.62) следует, что

(2.72)

На основании (2.70) – (2.72) получаем дифференциальное уравнение для среднего значения вектора состояния системы:

(2.73)

Вычисляя математическое ожидание от обеих частей уравнения (2.61), получим еще одно уравнение для среднего значения вектора состояния:

(2.74)

Сравнивая уравнения (2.73) и (2.74), можно определить первое условие несмещенности оценки вектора состояния с помощью рассматриваемого фильтра:

(2.75)

Второе условие состоит в том, чтобы уравнения (2.73) и (2.74) решались при одном и том же начальном условии:

(2.76)

Если выполнить условия несмещенности (2.75) и (2.76), то уравнение фильтра (2.68) примет вид:

(2.77)

Определим матрицу коэффициентов усиления фильтра K(t), которая должна обеспечивать оптимальную оценку в том смысле, что составляющие ошибки оценивания (2.69) должны иметь минимальную дисперсию:

Страницы: 1 2

Другое по теме:

Время на окончание формирования состава сборного поезда
Сборным поездом называется поезд, состоящий из вагонов назначением на промежуточные станции участка. Для окончания формирования сборного поезда из вагонов, накопленных на одном пути, производится сортировка вагонов для подборки их в соот ...

Схема работы автомобиля с гибридным двигателем
Для начала движения необходимо нажать на тормоз — иначе не тронуться с места. Переводим расположенный на руле селектор трансмиссии в положение Drive, нажимаем на педаль газа. И Prius с выключенным двигателем бесшумно трогается с места — п ...

Организация работы сортировочной горки
Основным назначением нечетной автоматизированной сортировочной горки является расформирование и формирование составов поездов, при безусловном обеспечении безопасности движения и техники безопасности работников, а также сохранности поездн ...

Навигация

Copyright © 2024 - All Rights Reserved - www.transportgood.ru